Fundamental Limitations of Spectral Clustering

نویسندگان

  • Boaz Nadler
  • Meirav Galun
چکیده

Spectral clustering methods are common graph-based approaches to clustering of data. Spectral clustering algorithms typically start from local information encoded in a weighted graph on the data and cluster according to the global eigenvectors of the corresponding (normalized) similarity matrix. One contribution of this paper is to present fundamental limitations of this general local to global approach. We show that based only on local information, the normalized cut functional is not a suitable measure for the quality of clustering. Further, even with a suitable similarity measure, we show that the first few eigenvectors of such adjacency matrices cannot successfully cluster datasets that contain structures at different scales of size and density. Based on these findings, a second contribution of this paper is a novel diffusion based measure to evaluate the coherence of individual clusters. Our measure can be used in conjunction with any bottom-up graph-based clustering method, it is scale-free and can determine coherent clusters at all scales. We present both synthetic examples and real image segmentation problems where various spectral clustering algorithms fail. In contrast, using this coherence measure finds the expected clusters at all scales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cortically-Inspired Spectral Clustering for Connectivity Analysis in Retinal Images: Curvature Integration

Tree-like structures such as retinal images are widely studied in computer-aided diagnosis systems for largescale screening programs. Despite several segmentation and tracking methods proposed in the literature, there still exist several limitations specifically when two or more curvilinear structures cross or bifurcate, or in the presence of interrupted lines or highly curved blood vessels. In...

متن کامل

Spectral Clustering With

Clustering is a fundamental problem in machine learning with numerous important applications in statistical signal processing, pattern recognition, and computer vision, where unsupervised analysis of data classification structures are required. The current stateof-the-art in clustering is widely accepted to be the socalled spectral clustering. Spectral clustering, based on pairwise affinities o...

متن کامل

CONTINUITY IN FUNDAMENTAL LOCALLY MULTIPLICATIVE TOPOLOGICAL ALGEBRAS

Abstract. In this paper, we first derive specific results concerning the continuity and upper semi-continuity of the spectral radius and spectrum functions on fundamental locally multiplicative topological algebras. We continue our investigation by further determining the automatic continuity of linear mappings and homomorphisms in these algebras.

متن کامل

A Comparative Study between a Pseudo-Forward Equation (PFE) and Intelligence Methods for the Characterization of the North Sea Reservoir

This paper presents a comparative study between three versions of adaptive neuro-fuzzy inference system (ANFIS) algorithms and a pseudo-forward equation (PFE) to characterize the North Sea reservoir (F3 block) based on seismic data. According to the statistical studies, four attributes (energy, envelope, spectral decomposition and similarity) are known to be useful as fundamental attributes in ...

متن کامل

Information Theoretic Model Validation for Spectral Clustering

Model validation constitutes a fundamental step in data clustering. The central question is: Which cluster model and how many clusters are most appropriate for a certain application? In this study, we introduce a method for the validation of spectral clustering based upon approximation set coding. In particular, we compare correlation and pairwise clustering to analyze the correlations of tempo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006